

Indian School Al Wadi Al Kabir

Assessment – I (2025-2026)

Class: XII Subject: CHEMISTRY (043) Max. marks: 70

Date: 21/09/2025 Set - I Time: 3 Hours

ANSWER KEY

1.	(A) Maltose	1
2.	(D) Benzaldehyde	1
3.	(C) Tertiary alcohol	1
4.	(C) 2-Ethoxy-1,1-dimethylcyclohexane	1
5.	(D) Proteins	1
6.	(A) Methanal	1
7.	(B) Primary aliphatic amines	1
8.	(D) Ethanol	1
9.	(B) Vinyl halide	1
10.	(D) 2-Bromo-2-methylpropane	1
11.	(A) Primary amine	1
12.	(C) CH ₃ OCH ₃ < CH ₃ CHO < CH ₃ CH ₂ OH < CH ₃ COOH	1
13.	(C) A is true but R is false.	1
14.	(D) A is false but R is true.	1
15.	(D) A is false but R is true.	1
16.	(A) Both A and R are true and R is the correct explanation of A	1
17.	a)	
	i) $COOH \longrightarrow NH_3 \longrightarrow NH_2$ NaOBr NH_2	1

	ii) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	OR	
	a) Aniline is a Lewis base and it reacts with AlCl ₃ to form a salt / N of aniline acquires positive charge with AlCl ₃ and hence is a deactivating group.	1
	b) $(CH_3)_3N < CH_3NH_2 < NH_3 < C_6H_5NH_2$	1
18.	a)	1
	b) O NH	1
19.	(i) $CH_3-CH_2-\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}$	2
	(iii) $CH_3CH_2 \xrightarrow{\bullet} CH_2CH_3 \longrightarrow CH_3CH_2 \xrightarrow{\bullet} CH_2CH_3 + \overset{\bullet}{H}$	
20.	a) Hydrolysis of sucrose gives dextrorotatory glucose and laevorotatory fructose. But the laevorotation of fructose is more than the dextrorotation of glucose. Hence, the mixture is laevorotatory.	1
	b) Vitamin B and C	1

21.	a) $CH_3CH_2CH_2CH_2 - CI \xrightarrow{NaI} CH_3CH_2CH_2CH_2 - I$	1
	b) $CH_3CH_2CH = CH_2 \xrightarrow{HBr} CH_3CH_2CH_2CH_2-Br$	1
	$\xrightarrow{\text{NaI}} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2 - \text{I}$	
22.	a) $CH_3 \xrightarrow{KMnO_4-KOH} \xrightarrow{COOK} \xrightarrow{H_3O^+} \xrightarrow{COOH}$	1
	b) O CHO O O O O O O O O O	1
	CH ₃ CH ₂ OH CH ₃ CH ₂ CHO CH ₃ CH ₂ CHO CH ₃ CH ₂ CHO CH ₃ CHO CH ₃ CH ₂ CHO CH ₃ CH ₂ CHO CH ₃	1
	d) $\xrightarrow{\text{Br}} \xrightarrow{\text{Mg}} \xrightarrow{\text{O=C=O}} \xrightarrow{\text{O}} \xrightarrow{\text{OMgBr}} \xrightarrow{\text{HOH}} \xrightarrow{\text{COOH}}$	
	(Any three)	
23.	a) (CH ₃) ₃ CCHO	1
	b) CH ₃ CH ₂ CH(CH ₃)CHO	1
	c) CH ₃ COCH ₂ CH ₂ CH ₃ or CH ₃ COCH(CH ₃) ₂	1
24.	он он он соон	1
	COO Na COOH OCOCH ₃	1/2
	A= , C= , D=	1/2
		1
25.	a) Nucleoside: Base + Sugar, Nucleotide: Base + Sugar + Phosphate	1
	b) Adenine (A), Guanine (G), Cytosine (C) and Thymine (T)	1
	c) Messenger RNA (m-RNA), ribosomal RNA (r-RNA) and transfer RNA (t-RNA).	1

26.	a) i) p-nitroaniline < Aniline < p-toluidine	1
20.	ii) C ₆ H ₅ NH ₂ , (C ₂ H ₅) ₂ NH, C ₂ H ₅ NH ₂	1
		1
	b) C–Cl bond is not cleaved easily by NH ₃ due to partial double bond character of C – Cl bond.	1
27.	a) β -D-galactose and β -D-glucose	1
	b)	
	Amylose Amylopectin	2
	Soluble in water Insoluble in water	
	Linear long chain polymer Branched chain polymer	
28.	a) Phenyl magnesium bromide is formed.	1
	b) Benzyl alcohol is formed.	1
	c) 2,4,6–Trinitrophenol / Picric acid is formed. (OR, write equations)	1
29.	a)	
	i) OH	1
	Br	1
	$+ 3 \operatorname{Br}_2 \longrightarrow$	
	Br	
	$ \begin{array}{cccc} \text{ii)} & & \text{OH} & & \text{OH} \\ \downarrow & & & \text{O}_2\text{N} & \downarrow & \text{NO}_2 \end{array} $	1
	Conc. HNO ₃	
	$ m NO_2$	
	b) o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding while	1
	p-nitrophenol is less volatile due to intermolecular hydrogen bonding which	
	causes the association of molecules.	
	c) (B) Kolbe's reaction	1
	OR	
	c) (B) Benzoquinone	
30.	a) i) Retention of configuration.	1
	ii) Inversion of configuration.	1
	b) A mixture containing two enantiomers in equal proportions.	1
	c) 2-Bromo-2-methylpropane	1

31.	a) Amino acids contain both acid (-COOH) and basic (-NH ₂) group and can react with both acids and bases.	1
	b) Amino acids which are not synthesized in our body and must be supplied through diet.	1
	c) Acidic amino acids contain more number of carboxyl groups than amino groups. Basic amino acids contain more number of amino groups than carboxyl groups.	1
	d) Peptide linkage	1
	e) Glycine	1
	OR	
	a) i. $ \begin{array}{ccc} CHO & CH & CH \\ CHOH)_4 & \xrightarrow{HCN} & (CHOH)_4 \end{array} $ $ \begin{array}{cccc} CH & OH \\ CHOH)_4 & CH_2OH \end{array} $	1
	ii. CHO COOH $(CHOH)_4 \xrightarrow{Br_2 \text{ water}} (CHOH)_4$ $CH_2OH CH_2OH$	1
	iii. CHO (CHOH) ₄ $\xrightarrow{\text{HI, } \Delta}$ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ (n-Hexane)	1
	b) $ \begin{array}{c c} CH_2OH \\ H \\ H \end{array} $ $ \begin{array}{c c} CH_2OH \\ H \end{array} $ $ \begin{array}{c c} H \\ H \end{array} $ $ \begin{array}{c c} OH \\ H \end{array} $ $ \begin{array}{c c} H \end{array} $ $ \begin{array}{c c} OH \\ H \end{array} $ $ \begin{array}{c c} OH \\ H \end{array} $ $ \begin{array}{c c} OH \\ OH \end{array} $	2

32.	a) i) When heated with NaOH and I ₂ , Pentan-2-one forms yellow ppt of Iodoform whereas Pentan-3-one doesn't.	1
	ii) When heated with Fehling reagent, Methanal forms a reddish brown precipitate whereas Benzaldehyde doesn't.	1
	iii) When NaHCO ₃ is added, Benzoic acid gives effervescence of CO ₂ whereas Ethyl benzoate doesn't.	1
	i) $C = O \xrightarrow{Zn-Hg} CH_2 + H_2O$	1
	ii) R-CH ₂ -COOH (i) X_2 /Red phosphorus R-CH-COOH X_2	1
	OR a)	
	i) CHO CH ₂ CH ₃	1
	2-Ethylbenzaldehyde	1
	ii) CHO CH_2CH_3 $+ Conc. KOH \longrightarrow CH_3$	1
	b) O ₂ NCH ₂ COOH > ClCH ₂ COOH > CH ₃ COOH c) DIBAL - H	1

22		
33.	a)	
	i) $A = C_6H_5CH_2NO_2$, $B = C_6H_5CH_2NH_2$, $C = C_6H_5CH_2NC$	1
	ii) $A = CH_3OH$, $B = CH_3CI$, $C = = CH_3CN$	1
	b) Hinsberg's Test:	
	Methyl amine reacts with Hinsberg's reagent to give a product which is soluble in alkali.	1
	Dimethyl amine reacts with Hinsberg's reagent to give a product which is insoluble in alkali.	1
	Trimethylamine doesn't react with Hinsberg's reagent.	1
	OR	
	a) i) Because aniline gets protonated to give anilinium ion which is deactivating in nature and is meta directing.	1
	b) çocı çonhch 3	1
	+ CH ₃ NH ₂	1
	N-Methylbenzamide	1
	с) СМ СООН	1
	i) A = B =	1
	ii) $A = CH_3CONH_2$ $B = CH_3NH_2$	1